MP Board Class 10th Math Solutions Chapter 4 : Ex 4.1 द्विघात समीकरण

NCERT Book Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.1

प्रश्नावली 4.1

प्रश्न 1.
जाँच कीजिए कि क्या निम्न द्विघात समीकरण हैं :
(i) (x + 1)2 = 2 (x – 3)
(ii) x2 – 2x = (-2) (3 – x)
(iii) (x – 2) (x + 1) = (x – 1) (x + 3)
(iv) (x – 3) (2x + 1) = x (x + 5)
(v) (2x – 1) (x – 3) = (x + 5) (x – 1)
(vi) x2 + 3x + 1 = (x – 2)2
(vii) (x + 2)3 = 2r (x2 – 1)
(viii) x3 – 4x2 – x + 1 = (x – 2)3

हल:
(i) (x + 1)2 = 2 (x – 3)
⇒ x2 + 2x + 1 = 2x – 6
⇒ x2 + 0x + 7 = 0
चूँकि उपरोक्त समीकरण ax2 + bx + c = 0 प्रकार का है, जहाँ a, b एवं c वास्तविक संख्याएँ हैं तथा a ≠ 0
अत: दत्त समीकरण एक द्विघात समीकरण है।

(ii) x2 – 2x = (-2) (3 – x)
⇒ x2 – 2x = -6 + 2x
⇒ x2 – 4x + 6 = 0
चूँकि उपरोक्त समीकरण ax2 + bx + c = 0 प्रकार का है, जहाँ a ≠ 0 तथा a, b और c वास्तविक संख्याएँ हैं।
अत: दत्त समीकरण एक द्विघात समीकरण है।

(iii) (x – 2) (x + 1) = (x – 1) (x + 3)
⇒ x2 – 2x + x – 2 = x2 – x + 3x – 3
⇒ x2 – 2 = x2 + 2x – 3
⇒ 3x – 1 = 0
चूँकि उपरोक्त समीकरण ax2 + bx + c = 0 प्रकार का नहीं हैं क्योंकि यहाँ a = 0 है। यह रैखिक समीकरण है।
अतः दत्त समीकरण एक द्विघात समीकरण नहीं है।

(iv) (x – 3) (2x + 1) = x (x + 5)
⇒ 2x2 + x – 6x – 3 = x2 + 5x
⇒ x2 – 10x – 3 = 0
चूँकि उपरोक्त समीकरण ax2 + bx + c = 0 प्रकार का है, जहाँ a, b और c वास्तविक संख्याएँ हैं और a ≠ 0. अतः दत्त समीकरण एक द्विघात समीकरण है।

(v) (2x – 1)(x – 3) = (x + 5) (x – 1)
⇒ 2x2 – 6x – x + 3 = x2 – x + 5x – 5
⇒ x2 – 11x + 8 = 0
चूँकि उपरोक्त समीकरण ax2 + bx + c = 0 प्रकार का है, जहाँ a, b और c वास्तविक संख्याएँ हैं और a ≠ 0 अतः उक्त समीकरण एक द्विघात समीकरण है।

(vi) x2 + 3x + 1 = (x – 2)2
⇒ x2 + 3x + 1 = x2 – 4x + 4
⇒ 7x – 3 = 0
चूँकि उपरोक्त समीकरण ax2 + bx + c = 0 प्रकार का नहीं है, क्योंकि यहाँ a = 0 है। यह एक रैखिक समीकरण है। अतः दत्त समीकरण एक द्विघात समीकरण नहीं है।

(vii) (x + 2)3 = 2x (x2 – 1)
⇒ x3 + 6x2 + 12x + 8 = 2x3 – 2x
⇒ x3 – 6x2 – 14x – 8 = 0
चूँकि उपरोक्त समीकरण त्रिघात समीकरण है।
अतः दत्त समीकरण द्विघात समीकरण नहीं हैं।

(viii) x3 – 4x2 – x + 1 = (x – 2)3
⇒ x3 – 4x2 – x + 1 = x3 – 6x2 + 12x – 8
⇒ 2x2 – 13x + 9 = 0
चूँकि उपरोक्त समीकरण ax2 + bx + c = 0 प्रकार का है, जहाँ a, b और c वास्तविक संख्याएँ हैं और a ≠ 0.
अतः दत्त समीकरण एक द्विघात समीकरण है।

प्रश्न 2.
निम्न स्थितियों को द्विधात समीकरणों के रूप में निरूपित कीजिए :
(i) एक आयताकार भू-खण्ड का क्षेत्रफल 528 m2 है। क्षेत्र की लम्बाई (मीटरों में) चौड़ाई के दुगने से एक अधिक है। हमें भू-खण्ड की लम्बाई और चौड़ाई ज्ञात करना है।
(ii) दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 306 है। हमें पूर्णांकों को ज्ञात करना है।
(iii) रोहन की माँ उससे 26 साल बड़ी है। उनकी आयु (वर्षों में) का गुणनफल अब से तीन वर्ष पश्चात् 360 हो जाएगा। हमें रोहन की वर्तमान आयु ज्ञात करनी है।
(iv) एक रेलगाड़ी 480 km की दूरी समान चाल से तय करती है। यदि इसकी चाल 8 km/hr कम होती तो वह उसी दूरी को तय करने में 3 घण्टे अधिक लेती। हमें रेलगाड़ी की चाल ज्ञात करनी है।
हल:
(i) मान लीजिए आयताकार भू-खण्ड की चौड़ाई है x m है, तो प्रश्नानुसार,
लम्बाई = 2 × चौड़ाई + 1 = 2x + 1
तथा क्षेत्रफल = लम्बाई × चौड़ाई
⇒ (2x + 1) (x) = 528
⇒ 2x2 + x – 528 = 0
अतः अभीष्ट द्विघात समीकरण 2x2 + x – 528 = 0 है, जहाँ x आयताकार भू-खण्ड की चौड़ाई (मीटरों में) है।

(ii) मान लीजिए दो क्रमागत धनात्मक पूर्णांक क्रमशः x और x + 1 हैं, तो प्रश्नानुसार,
x (x + 1) = 306
⇒ x2 + x = 306
⇒ x2 + x – 306 = 0
अत: अभीष्ट द्विघात समीकरण x2 + x – 306 = 0 है, जहाँ x एक धनात्मक पूर्णांक है।

(iii) मान लीजिए कि रोहन की वर्तमान आयु x वर्ष है, तो प्रश्नानुसार,
उसकी माँ की वर्तमान आयु = x + 26 वर्ष
एवं (x + 3) (x + 26 + 3) = 360
⇒ (x + 3) (x + 29) = 360
⇒ x2 + 29x + 3x + 87 = 360
⇒ x2 + 32x + 87 – 360 = 0
⇒ x2 + 32x – 273 = 0
अतः अभीष्ट द्विघात समीकरण x2 + 32x – 273 = 0 है, जहाँ x = रोहन की वर्तमान आयु (वर्षों में)

(iv) मान लीजिए कि रेलगाड़ी की चाल x km/hr है, तो प्रश्नानुसार,

⇒ 160x – 160x + 1280 = x (x – 8)
⇒ x2 – 8x – 1280 = 0
अतः अभीष्ट द्विघात समीकरण x2 – 8x – 1280 = 0 है, जहाँ x रेलगाड़ी की चाल km/hr में है।

Leave a Reply

Your email address will not be published. Required fields are marked *